Problem: 0(1(0(2(x1)))) -> 2(0(3(1(0(x1))))) 0(1(0(2(x1)))) -> 2(0(0(3(1(2(x1)))))) 0(1(0(2(x1)))) -> 2(0(3(1(0(4(x1)))))) 0(1(0(2(x1)))) -> 2(2(0(3(1(0(x1)))))) 0(1(0(2(x1)))) -> 2(3(1(0(0(2(x1)))))) 0(1(0(2(x1)))) -> 2(3(1(0(3(0(x1)))))) 0(1(0(2(x1)))) -> 4(1(0(3(0(2(x1)))))) 0(1(0(2(x1)))) -> 4(1(0(4(0(2(x1)))))) 0(1(4(2(x1)))) -> 2(3(1(0(4(x1))))) 0(1(4(2(x1)))) -> 2(4(0(3(1(x1))))) 0(1(4(2(x1)))) -> 3(2(1(0(4(x1))))) 0(1(4(2(x1)))) -> 3(2(1(4(0(x1))))) 0(1(4(2(x1)))) -> 4(0(3(1(2(x1))))) 0(1(4(2(x1)))) -> 4(1(0(3(2(x1))))) 0(1(4(2(x1)))) -> 4(1(0(4(2(x1))))) 0(1(4(2(x1)))) -> 4(1(0(5(2(x1))))) 0(1(4(2(x1)))) -> 2(0(3(1(0(4(x1)))))) 0(1(4(2(x1)))) -> 2(0(3(1(4(4(x1)))))) 0(1(4(2(x1)))) -> 2(3(1(4(0(4(x1)))))) 0(1(4(2(x1)))) -> 2(4(3(0(4(1(x1)))))) 0(1(4(2(x1)))) -> 2(4(3(1(0(3(x1)))))) 0(1(4(2(x1)))) -> 3(2(1(0(4(1(x1)))))) 0(1(4(2(x1)))) -> 3(2(2(1(4(0(x1)))))) 0(1(4(2(x1)))) -> 3(2(3(1(0(4(x1)))))) 0(1(4(2(x1)))) -> 3(2(3(1(4(0(x1)))))) 0(1(4(2(x1)))) -> 4(0(3(1(3(2(x1)))))) 0(1(4(2(x1)))) -> 4(0(3(1(4(2(x1)))))) 0(1(4(2(x1)))) -> 4(1(0(4(3(2(x1)))))) 0(1(4(2(x1)))) -> 4(1(0(4(5(2(x1)))))) 0(1(4(2(x1)))) -> 4(1(0(5(3(2(x1)))))) 0(1(4(2(x1)))) -> 4(1(1(0(5(2(x1)))))) 0(1(4(2(x1)))) -> 4(1(3(0(5(2(x1)))))) 0(1(4(2(x1)))) -> 4(3(0(3(1(2(x1)))))) 0(1(4(2(x1)))) -> 4(4(0(3(1(2(x1)))))) 0(0(1(0(2(x1))))) -> 1(0(0(2(0(4(x1)))))) 0(0(1(0(2(x1))))) -> 1(0(4(0(0(2(x1)))))) 0(0(1(0(2(x1))))) -> 2(1(0(3(0(0(x1)))))) 0(0(1(4(2(x1))))) -> 0(0(3(1(2(4(x1)))))) 0(0(1(4(2(x1))))) -> 0(2(3(1(0(4(x1)))))) 0(0(1(4(2(x1))))) -> 0(2(4(0(3(1(x1)))))) 0(0(1(4(2(x1))))) -> 0(3(1(0(2(4(x1)))))) 0(0(1(4(2(x1))))) -> 1(0(3(4(0(2(x1)))))) 0(0(1(4(2(x1))))) -> 2(0(0(3(1(4(x1)))))) 0(0(1(4(2(x1))))) -> 2(1(0(4(0(0(x1)))))) 0(1(2(0(2(x1))))) -> 2(0(1(0(4(2(x1)))))) 0(1(2(4(2(x1))))) -> 2(3(1(0(2(4(x1)))))) 0(1(2(4(2(x1))))) -> 4(1(0(2(2(4(x1)))))) 0(1(3(4(2(x1))))) -> 2(3(1(4(4(0(x1)))))) 0(1(3(4(2(x1))))) -> 2(4(3(0(4(1(x1)))))) 0(1(3(4(2(x1))))) -> 3(2(1(0(4(0(x1)))))) 0(1(3(4(2(x1))))) -> 4(0(3(3(1(2(x1)))))) 0(1(3(4(2(x1))))) -> 4(1(4(0(3(2(x1)))))) 0(1(4(0(2(x1))))) -> 2(0(3(1(0(4(x1)))))) 0(1(5(0(2(x1))))) -> 0(2(3(1(0(5(x1)))))) 0(1(5(0(2(x1))))) -> 3(0(5(1(0(2(x1)))))) 0(1(5(0(2(x1))))) -> 5(1(3(0(0(2(x1)))))) 0(1(5(4(2(x1))))) -> 0(4(4(1(2(5(x1)))))) 0(1(5(4(2(x1))))) -> 1(0(4(5(1(2(x1)))))) 0(1(5(4(2(x1))))) -> 2(0(4(4(5(1(x1)))))) 0(1(5(4(2(x1))))) -> 4(0(2(3(1(5(x1)))))) 0(1(5(4(2(x1))))) -> 4(1(0(2(5(2(x1)))))) 0(1(5(4(2(x1))))) -> 4(1(0(5(2(5(x1)))))) 0(1(5(4(2(x1))))) -> 4(2(1(3(0(5(x1)))))) 0(1(5(4(2(x1))))) -> 4(3(1(0(2(5(x1)))))) 0(1(5(4(2(x1))))) -> 4(4(0(5(1(2(x1)))))) 0(1(5(4(2(x1))))) -> 4(4(2(1(0(5(x1)))))) 0(1(5(4(2(x1))))) -> 5(0(4(5(2(1(x1)))))) 0(1(5(4(2(x1))))) -> 5(1(2(0(4(3(x1)))))) 0(1(5(4(2(x1))))) -> 5(3(1(0(4(2(x1)))))) 0(2(1(4(2(x1))))) -> 0(4(4(1(2(2(x1)))))) 0(2(1(4(2(x1))))) -> 3(2(2(1(4(0(x1)))))) 0(2(1(4(2(x1))))) -> 4(1(0(3(2(2(x1)))))) 5(0(1(4(2(x1))))) -> 2(0(4(3(5(1(x1)))))) 5(0(1(4(2(x1))))) -> 2(4(0(3(1(5(x1)))))) 5(0(1(4(2(x1))))) -> 4(1(0(5(3(2(x1)))))) 5(0(1(4(2(x1))))) -> 5(2(1(1(0(4(x1)))))) 5(0(2(0(2(x1))))) -> 5(0(3(0(2(2(x1)))))) 5(0(2(0(2(x1))))) -> 5(0(4(0(2(2(x1)))))) 5(0(2(4(2(x1))))) -> 5(4(0(3(2(2(x1)))))) 5(1(5(0(2(x1))))) -> 5(2(1(4(5(0(x1)))))) 5(1(5(4(2(x1))))) -> 5(2(1(0(4(5(x1)))))) 5(4(1(4(2(x1))))) -> 3(2(1(4(4(5(x1)))))) 5(4(1(4(2(x1))))) -> 4(4(3(5(1(2(x1)))))) 5(4(2(0(2(x1))))) -> 3(0(5(2(2(4(x1)))))) 5(4(2(0(2(x1))))) -> 4(0(5(3(2(2(x1)))))) 5(4(2(0(2(x1))))) -> 5(2(2(2(4(0(x1)))))) 5(4(2(0(2(x1))))) -> 5(3(2(2(4(0(x1)))))) 5(4(2(0(2(x1))))) -> 5(4(2(2(4(0(x1)))))) 5(4(2(4(2(x1))))) -> 0(4(4(5(2(2(x1)))))) 5(4(2(4(2(x1))))) -> 5(4(4(3(2(2(x1)))))) 5(4(5(4(2(x1))))) -> 4(5(0(4(5(2(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6,5} transitions: 51(257) -> 258* 51(177) -> 178* 51(279) -> 280* 51(274) -> 275* 51(259) -> 260* 51(249) -> 250* 51(251) -> 252* 51(233) -> 234* 51(113) -> 114* 41(262) -> 263* 41(60) -> 61* 41(25) -> 26* 41(127) -> 128* 41(234) -> 235* 41(27) -> 28* 41(219) -> 220* 41(129) -> 130* 41(276) -> 277* 41(261) -> 262* 41(39) -> 40* 41(19) -> 20* 41(201) -> 202* 41(121) -> 122* 41(111) -> 112* 41(81) -> 82* 41(193) -> 194* 41(275) -> 276* 41(235) -> 236* 41(220) -> 221* 41(215) -> 216* 41(13) -> 14* 41(175) -> 176* 31(167) -> 168* 31(57) -> 58* 31(37) -> 38* 31(209) -> 210* 31(79) -> 80* 31(231) -> 232* 31(191) -> 192* 31(151) -> 152* 31(141) -> 142* 31(131) -> 132* 31(101) -> 102* 31(238) -> 239* 31(16) -> 17* 31(153) -> 154* 31(260) -> 261* 31(185) -> 186* 31(145) -> 146* 21(237) -> 238* 21(217) -> 218* 21(77) -> 78* 21(17) -> 18* 21(199) -> 200* 21(99) -> 100* 21(161) -> 162* 21(91) -> 92* 21(56) -> 57* 21(93) -> 94* 01(80) -> 81* 01(277) -> 278* 01(75) -> 76* 01(207) -> 208* 01(142) -> 143* 01(102) -> 103* 01(67) -> 68* 01(119) -> 120* 01(69) -> 70* 01(59) -> 60* 01(221) -> 222* 01(14) -> 15* 01(38) -> 39* 01(130) -> 131* 11(15) -> 16* 11(47) -> 48* 11(169) -> 170* 11(159) -> 160* 11(49) -> 50* 11(236) -> 237* 11(41) -> 42* 11(36) -> 37* 11(218) -> 219* 11(183) -> 184* 11(143) -> 144* 11(103) -> 104* 11(78) -> 79* 42(314) -> 315* 42(311) -> 312* 42(291) -> 292* 00(2) -> 5* 00(4) -> 5* 00(1) -> 5* 00(3) -> 5* 52(313) -> 314* 52(303) -> 304* 52(310) -> 311* 52(305) -> 306* 52(295) -> 296* 52(290) -> 291* 52(297) -> 298* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 02(312) -> 313* 02(292) -> 293* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 22(309) -> 310* 22(294) -> 295* 22(316) -> 317* 22(325) -> 326* 22(327) -> 328* 30(2) -> 3* 30(4) -> 3* 30(1) -> 3* 30(3) -> 3* 12(293) -> 294* 40(2) -> 4* 40(4) -> 4* 40(1) -> 4* 40(3) -> 4* 50(2) -> 6* 50(4) -> 6* 50(1) -> 6* 50(3) -> 6* 1 -> 251,151,93,69,47,25 2 -> 233,141,77,59,36,13 3 -> 257,153,99,75,49,27 4 -> 249,145,91,67,41,19 14 -> 199,121 15 -> 127* 16 -> 201,56 17 -> 119* 18 -> 70,167,5 20 -> 14* 26 -> 14* 28 -> 14* 37 -> 129* 40 -> 17* 42 -> 37* 48 -> 37* 50 -> 37* 57 -> 161* 58 -> 70,5 61 -> 70,207,15 68 -> 60* 70 -> 60* 76 -> 60* 77 -> 309,290 78 -> 217,113,111,101 79 -> 259* 80 -> 209* 81 -> 191* 82 -> 70,193,5 91 -> 325,303 92 -> 78* 93 -> 327,305 94 -> 78* 99 -> 316,297 100 -> 78* 102 -> 177,175,169 103 -> 215,185 104 -> 183,81 112 -> 102* 114 -> 102* 120 -> 17* 122 -> 15* 128 -> 279,15 131 -> 159* 132 -> 39* 144 -> 131* 146 -> 142* 152 -> 142* 154 -> 142* 160 -> 56* 162 -> 57* 168 -> 70,5 170 -> 79* 176 -> 102* 178 -> 102* 184 -> 81* 186 -> 103* 192 -> 81* 194 -> 5* 200 -> 14* 202 -> 70,60,5 208 -> 15* 210 -> 80* 216 -> 15* 218 -> 274,231 222 -> 60,5 232 -> 14* 239 -> 304,291,250,234,6 250 -> 234* 252 -> 234* 258 -> 234* 263 -> 304,291,250,234,6 278 -> 304,291,178,102,250,169,177,6 280 -> 304,291,178,102,250,169,177,6 296 -> 260* 298 -> 291* 304 -> 291* 306 -> 291* 315 -> 178,102,169,177 317 -> 310* 326 -> 310* 328 -> 310* problem: Qed