Problem:
 0(1(0(2(x1)))) -> 2(0(3(1(0(x1)))))
 0(1(0(2(x1)))) -> 2(0(0(3(1(2(x1))))))
 0(1(0(2(x1)))) -> 2(0(3(1(0(4(x1))))))
 0(1(0(2(x1)))) -> 2(2(0(3(1(0(x1))))))
 0(1(0(2(x1)))) -> 2(3(1(0(0(2(x1))))))
 0(1(0(2(x1)))) -> 2(3(1(0(3(0(x1))))))
 0(1(0(2(x1)))) -> 4(1(0(3(0(2(x1))))))
 0(1(0(2(x1)))) -> 4(1(0(4(0(2(x1))))))
 0(1(4(2(x1)))) -> 2(3(1(0(4(x1)))))
 0(1(4(2(x1)))) -> 2(4(0(3(1(x1)))))
 0(1(4(2(x1)))) -> 3(2(1(0(4(x1)))))
 0(1(4(2(x1)))) -> 3(2(1(4(0(x1)))))
 0(1(4(2(x1)))) -> 4(0(3(1(2(x1)))))
 0(1(4(2(x1)))) -> 4(1(0(3(2(x1)))))
 0(1(4(2(x1)))) -> 4(1(0(4(2(x1)))))
 0(1(4(2(x1)))) -> 4(1(0(5(2(x1)))))
 0(1(4(2(x1)))) -> 2(0(3(1(0(4(x1))))))
 0(1(4(2(x1)))) -> 2(0(3(1(4(4(x1))))))
 0(1(4(2(x1)))) -> 2(3(1(4(0(4(x1))))))
 0(1(4(2(x1)))) -> 2(4(3(0(4(1(x1))))))
 0(1(4(2(x1)))) -> 2(4(3(1(0(3(x1))))))
 0(1(4(2(x1)))) -> 3(2(1(0(4(1(x1))))))
 0(1(4(2(x1)))) -> 3(2(2(1(4(0(x1))))))
 0(1(4(2(x1)))) -> 3(2(3(1(0(4(x1))))))
 0(1(4(2(x1)))) -> 3(2(3(1(4(0(x1))))))
 0(1(4(2(x1)))) -> 4(0(3(1(3(2(x1))))))
 0(1(4(2(x1)))) -> 4(0(3(1(4(2(x1))))))
 0(1(4(2(x1)))) -> 4(1(0(4(3(2(x1))))))
 0(1(4(2(x1)))) -> 4(1(0(4(5(2(x1))))))
 0(1(4(2(x1)))) -> 4(1(0(5(3(2(x1))))))
 0(1(4(2(x1)))) -> 4(1(1(0(5(2(x1))))))
 0(1(4(2(x1)))) -> 4(1(3(0(5(2(x1))))))
 0(1(4(2(x1)))) -> 4(3(0(3(1(2(x1))))))
 0(1(4(2(x1)))) -> 4(4(0(3(1(2(x1))))))
 0(0(1(0(2(x1))))) -> 1(0(0(2(0(4(x1))))))
 0(0(1(0(2(x1))))) -> 1(0(4(0(0(2(x1))))))
 0(0(1(0(2(x1))))) -> 2(1(0(3(0(0(x1))))))
 0(0(1(4(2(x1))))) -> 0(0(3(1(2(4(x1))))))
 0(0(1(4(2(x1))))) -> 0(2(3(1(0(4(x1))))))
 0(0(1(4(2(x1))))) -> 0(2(4(0(3(1(x1))))))
 0(0(1(4(2(x1))))) -> 0(3(1(0(2(4(x1))))))
 0(0(1(4(2(x1))))) -> 1(0(3(4(0(2(x1))))))
 0(0(1(4(2(x1))))) -> 2(0(0(3(1(4(x1))))))
 0(0(1(4(2(x1))))) -> 2(1(0(4(0(0(x1))))))
 0(1(2(0(2(x1))))) -> 2(0(1(0(4(2(x1))))))
 0(1(2(4(2(x1))))) -> 2(3(1(0(2(4(x1))))))
 0(1(2(4(2(x1))))) -> 4(1(0(2(2(4(x1))))))
 0(1(3(4(2(x1))))) -> 2(3(1(4(4(0(x1))))))
 0(1(3(4(2(x1))))) -> 2(4(3(0(4(1(x1))))))
 0(1(3(4(2(x1))))) -> 3(2(1(0(4(0(x1))))))
 0(1(3(4(2(x1))))) -> 4(0(3(3(1(2(x1))))))
 0(1(3(4(2(x1))))) -> 4(1(4(0(3(2(x1))))))
 0(1(4(0(2(x1))))) -> 2(0(3(1(0(4(x1))))))
 0(1(5(0(2(x1))))) -> 0(2(3(1(0(5(x1))))))
 0(1(5(0(2(x1))))) -> 3(0(5(1(0(2(x1))))))
 0(1(5(0(2(x1))))) -> 5(1(3(0(0(2(x1))))))
 0(1(5(4(2(x1))))) -> 0(4(4(1(2(5(x1))))))
 0(1(5(4(2(x1))))) -> 1(0(4(5(1(2(x1))))))
 0(1(5(4(2(x1))))) -> 2(0(4(4(5(1(x1))))))
 0(1(5(4(2(x1))))) -> 4(0(2(3(1(5(x1))))))
 0(1(5(4(2(x1))))) -> 4(1(0(2(5(2(x1))))))
 0(1(5(4(2(x1))))) -> 4(1(0(5(2(5(x1))))))
 0(1(5(4(2(x1))))) -> 4(2(1(3(0(5(x1))))))
 0(1(5(4(2(x1))))) -> 4(3(1(0(2(5(x1))))))
 0(1(5(4(2(x1))))) -> 4(4(0(5(1(2(x1))))))
 0(1(5(4(2(x1))))) -> 4(4(2(1(0(5(x1))))))
 0(1(5(4(2(x1))))) -> 5(0(4(5(2(1(x1))))))
 0(1(5(4(2(x1))))) -> 5(1(2(0(4(3(x1))))))
 0(1(5(4(2(x1))))) -> 5(3(1(0(4(2(x1))))))
 0(2(1(4(2(x1))))) -> 0(4(4(1(2(2(x1))))))
 0(2(1(4(2(x1))))) -> 3(2(2(1(4(0(x1))))))
 0(2(1(4(2(x1))))) -> 4(1(0(3(2(2(x1))))))
 5(0(1(4(2(x1))))) -> 2(0(4(3(5(1(x1))))))
 5(0(1(4(2(x1))))) -> 2(4(0(3(1(5(x1))))))
 5(0(1(4(2(x1))))) -> 4(1(0(5(3(2(x1))))))
 5(0(1(4(2(x1))))) -> 5(2(1(1(0(4(x1))))))
 5(0(2(0(2(x1))))) -> 5(0(3(0(2(2(x1))))))
 5(0(2(0(2(x1))))) -> 5(0(4(0(2(2(x1))))))
 5(0(2(4(2(x1))))) -> 5(4(0(3(2(2(x1))))))
 5(1(5(0(2(x1))))) -> 5(2(1(4(5(0(x1))))))
 5(1(5(4(2(x1))))) -> 5(2(1(0(4(5(x1))))))
 5(4(1(4(2(x1))))) -> 3(2(1(4(4(5(x1))))))
 5(4(1(4(2(x1))))) -> 4(4(3(5(1(2(x1))))))
 5(4(2(0(2(x1))))) -> 3(0(5(2(2(4(x1))))))
 5(4(2(0(2(x1))))) -> 4(0(5(3(2(2(x1))))))
 5(4(2(0(2(x1))))) -> 5(2(2(2(4(0(x1))))))
 5(4(2(0(2(x1))))) -> 5(3(2(2(4(0(x1))))))
 5(4(2(0(2(x1))))) -> 5(4(2(2(4(0(x1))))))
 5(4(2(4(2(x1))))) -> 0(4(4(5(2(2(x1))))))
 5(4(2(4(2(x1))))) -> 5(4(4(3(2(2(x1))))))
 5(4(5(4(2(x1))))) -> 4(5(0(4(5(2(x1))))))

Proof:
 Bounds Processor:
  bound: 2
  enrichment: match
  automaton:
   final states: {6,5}
   transitions:
    51(257) -> 258*
    51(177) -> 178*
    51(279) -> 280*
    51(274) -> 275*
    51(259) -> 260*
    51(249) -> 250*
    51(251) -> 252*
    51(233) -> 234*
    51(113) -> 114*
    41(262) -> 263*
    41(60) -> 61*
    41(25) -> 26*
    41(127) -> 128*
    41(234) -> 235*
    41(27) -> 28*
    41(219) -> 220*
    41(129) -> 130*
    41(276) -> 277*
    41(261) -> 262*
    41(39) -> 40*
    41(19) -> 20*
    41(201) -> 202*
    41(121) -> 122*
    41(111) -> 112*
    41(81) -> 82*
    41(193) -> 194*
    41(275) -> 276*
    41(235) -> 236*
    41(220) -> 221*
    41(215) -> 216*
    41(13) -> 14*
    41(175) -> 176*
    31(167) -> 168*
    31(57) -> 58*
    31(37) -> 38*
    31(209) -> 210*
    31(79) -> 80*
    31(231) -> 232*
    31(191) -> 192*
    31(151) -> 152*
    31(141) -> 142*
    31(131) -> 132*
    31(101) -> 102*
    31(238) -> 239*
    31(16) -> 17*
    31(153) -> 154*
    31(260) -> 261*
    31(185) -> 186*
    31(145) -> 146*
    21(237) -> 238*
    21(217) -> 218*
    21(77) -> 78*
    21(17) -> 18*
    21(199) -> 200*
    21(99) -> 100*
    21(161) -> 162*
    21(91) -> 92*
    21(56) -> 57*
    21(93) -> 94*
    01(80) -> 81*
    01(277) -> 278*
    01(75) -> 76*
    01(207) -> 208*
    01(142) -> 143*
    01(102) -> 103*
    01(67) -> 68*
    01(119) -> 120*
    01(69) -> 70*
    01(59) -> 60*
    01(221) -> 222*
    01(14) -> 15*
    01(38) -> 39*
    01(130) -> 131*
    11(15) -> 16*
    11(47) -> 48*
    11(169) -> 170*
    11(159) -> 160*
    11(49) -> 50*
    11(236) -> 237*
    11(41) -> 42*
    11(36) -> 37*
    11(218) -> 219*
    11(183) -> 184*
    11(143) -> 144*
    11(103) -> 104*
    11(78) -> 79*
    42(314) -> 315*
    42(311) -> 312*
    42(291) -> 292*
    00(2) -> 5*
    00(4) -> 5*
    00(1) -> 5*
    00(3) -> 5*
    52(313) -> 314*
    52(303) -> 304*
    52(310) -> 311*
    52(305) -> 306*
    52(295) -> 296*
    52(290) -> 291*
    52(297) -> 298*
    10(2) -> 1*
    10(4) -> 1*
    10(1) -> 1*
    10(3) -> 1*
    02(312) -> 313*
    02(292) -> 293*
    20(2) -> 2*
    20(4) -> 2*
    20(1) -> 2*
    20(3) -> 2*
    22(309) -> 310*
    22(294) -> 295*
    22(316) -> 317*
    22(325) -> 326*
    22(327) -> 328*
    30(2) -> 3*
    30(4) -> 3*
    30(1) -> 3*
    30(3) -> 3*
    12(293) -> 294*
    40(2) -> 4*
    40(4) -> 4*
    40(1) -> 4*
    40(3) -> 4*
    50(2) -> 6*
    50(4) -> 6*
    50(1) -> 6*
    50(3) -> 6*
    1 -> 251,151,93,69,47,25
    2 -> 233,141,77,59,36,13
    3 -> 257,153,99,75,49,27
    4 -> 249,145,91,67,41,19
    14 -> 199,121
    15 -> 127*
    16 -> 201,56
    17 -> 119*
    18 -> 70,167,5
    20 -> 14*
    26 -> 14*
    28 -> 14*
    37 -> 129*
    40 -> 17*
    42 -> 37*
    48 -> 37*
    50 -> 37*
    57 -> 161*
    58 -> 70,5
    61 -> 70,207,15
    68 -> 60*
    70 -> 60*
    76 -> 60*
    77 -> 309,290
    78 -> 217,113,111,101
    79 -> 259*
    80 -> 209*
    81 -> 191*
    82 -> 70,193,5
    91 -> 325,303
    92 -> 78*
    93 -> 327,305
    94 -> 78*
    99 -> 316,297
    100 -> 78*
    102 -> 177,175,169
    103 -> 215,185
    104 -> 183,81
    112 -> 102*
    114 -> 102*
    120 -> 17*
    122 -> 15*
    128 -> 279,15
    131 -> 159*
    132 -> 39*
    144 -> 131*
    146 -> 142*
    152 -> 142*
    154 -> 142*
    160 -> 56*
    162 -> 57*
    168 -> 70,5
    170 -> 79*
    176 -> 102*
    178 -> 102*
    184 -> 81*
    186 -> 103*
    192 -> 81*
    194 -> 5*
    200 -> 14*
    202 -> 70,60,5
    208 -> 15*
    210 -> 80*
    216 -> 15*
    218 -> 274,231
    222 -> 60,5
    232 -> 14*
    239 -> 304,291,250,234,6
    250 -> 234*
    252 -> 234*
    258 -> 234*
    263 -> 304,291,250,234,6
    278 -> 304,291,178,102,250,169,177,6
    280 -> 304,291,178,102,250,169,177,6
    296 -> 260*
    298 -> 291*
    304 -> 291*
    306 -> 291*
    315 -> 178,102,169,177
    317 -> 310*
    326 -> 310*
    328 -> 310*
  problem:
   
  Qed